সূচকঃ সরল, প্রমান ও সমাধান
সরল কর (১-৮):
সমাধানঃ সমাধানসমুহ পর্যায়ক্রমে নিচে দেওয়া হলোঃ
১.
|
73✕7-3 --------
3✕3-4
|
=
|
73-3
-----
31-4
|
=
|
70
-----
3-3
|
= |
1
---
1
----
27
|
= |
27 |
২.
|
3√72.3√7 -----------
√7
|
=
|
72/3.71/3
----------
71/2
|
=
|
7(2/3+1/3)
-----------
71/2
|
=
|
73/3
------
71/2
|
=
|
71
-----
71/2
|
=
|
71-1/2
|
=
|
71/2
|
=
|
√7
|
=(1/2+1/5)-1
=(5/10+2/10)-1
=(7/10)-1
=10/7
৪. |
(2a-1+3b-1)-1 |
= |
(2✕1/a+3✕1/b)-1 |
= |
(2/a+3/b)-1 |
= |
{(2b+3a)/ab}-1 |
=
|
ab -------
2b+3a
|
৫.
|
( |
a2b-1 --------
a-1b
|
)2 |
= |
( |
a2.1/b ---------
1/a2.b
|
)2 |
= |
( |
a2/b -------
b/a2
|
)2 |
= |
( |
a2.a2 ------
b.b
|
)2 |
= |
( |
a4 ----
b2
|
)2 |
=
|
|
a8 ----
b4
|
|
৬. |
√(x-1y) |
. |
√(y-1z |
. |
√z-1x |
= |
√(y/x) |
. |
√(z/y) |
. |
√(x/z) |
= |
(y/x)1/2 |
. |
(z/y)1/2 |
. |
(x/z)1/2 |
=
|
y1/2 -----
x1/2
|
.
|
z1/2 -----
y1/2
|
.
|
x1/2 -----
z1/2
|
=
|
y1/2 -----
y1/2
|
.
|
z1/2 -----
z1/2
|
.
|
x1/2 -----
x1/2
|
= |
y1/2-1/2 |
. |
z1/2-1/2 |
. |
x1/2-1/2 |
= |
y0 |
. |
z0 |
. |
x0 |
= |
1 |
. |
1 |
. |
1 |
= |
1 |
|
|
|
|
৭.
|
2n+4-4.2n+1 --------------
2n+2÷2
|
=
|
2n24-4.2n21 --------------
2n.22÷2
|
=
|
2n(24-4.2) ------------
2n.4÷2
|
=
|
2n(16-8) ----------
2n.2
|
=
|
8 --
2
|
= |
4 |
৮.
|
3m+1 ---------
(3m)m-1
|
÷
|
9m+1 ------------
(3m-1)m+1
|
|
|
=
|
3m+1 --------
3m(m-1)
|
÷
|
32(m+1) --------------
3(m-1)(m+1)
|
|
|
= |
3m+1-m(m-1) ÷ 32(m+1)-(m-1)(m+1) |
||||
|
3m+1-m(m-1)-{2(m+1)-(m-1)(m+1)} |
||||
এখন, |
|
|
|
|
|
= |
m+1-m(m-1)-{2(m+1)-(m-1)(m+1)} |
||||
= |
m+1-m2-m-{2m+2-(m2-12)} |
||||
= |
m+1-m2+m-(2m+2-m2+1} |
||||
= |
m+1-m2+m-2m-2+m2-1 |
||||
= |
-2 |
|
|
||
প্রদত্ত রাশি |
= |
3-2 |
|
|
|
|
|
=
|
1 --
32
|
|
|
|
|
=
|
1 --
9
|
|
|
৯.
|
4n-1 -----
2n-1
|
= |
2n+1 |
|
|
|
|
LHS
|
=
|
4n-1 -----
2n-1
|
|
|
|
|
|
=
|
22n-1 ------
2n-1
|
|
|
|
|
|
=
|
(22n-1) (2n+1) ----------------
(2n-1)
(2n+1)
|
|||
|
|
=
|
(22n-1) (2n+1) ----------------
(2n)2-12
|
|||
|
|
=
|
(22n-1) (2n+1) ---------------
22n-1
|
|||
|
|
= |
2n+1 |
|
|
|
|
|
= |
RHS |
(Proved) |
১০.
|
22p+1.32p+q.5p+q.6p ----------------------
3p-2.62p+2.10p.15q
|
=
|
1 --
2
|
LHS=
|
22p+1.32p+q.5p+q.(3✕2)p ----------------------------------
3p-2.(3✕2)2p+2.(5✕2)p.(5✕3)q
|
|
|
=
|
22p+1.32p+q.5p+q.3p.2p --------------------------------
3p-2.32p+2.22p+2.5p.2p.5q.3q
|
|
|
=
|
22p+1+p.32p+q+p.5p+q ------------------------------
3p-2+2p+2+q.22p+2+p.5p+q
|
|
|
=
|
23p+1.33p+q.5p+q -------------------
33p+q.23p+2.5p+q
|
|
|
= |
33p+q-3p-q.23p+1-3p-2.5p+q-p-q |
|
|
= |
30.2-1.50 |
|
|
= |
1.2-1.1 |
|
|
= |
2-1 |
|
|
= |
1 2
|
|
|
= |
RHS (Proved) |
|
|
১১. |
(al/am)n |
. |
(am/an)l |
. |
(an/al)m |
=1 |
LHS= |
(al/am)n |
. |
(am/an)l |
. |
(an/al)m |
|
=
|
aln ----
amn
|
.
|
aml ----
anl
|
.
|
anm ----
aml
|
|
=
|
aln+ml+nm -------------
amn+nl+ml
|
|
|
|
|
|
= |
1 |
|
|
|
|
|
= |
RSH (Proved) |
|
|
|
১২.
|
ap+q ----
a2r
|
✕
|
aq+r ----
a2p
|
✕
|
ar+p -----
a2q
|
=
|
1 |
LHS=
|
ap+q ----
a2r
|
✕
|
aq+r ----
a2p
|
✕
|
ar+p -----
a2q
|
|
|
=
|
ap+q+q+r+r+p ------------
a2r+2p+2q
|
|
|
|
|
||
=
|
a2r+2p+2q -----------
a2r+2p+2q
|
|
|
|
|
||
= |
1 |
|
|
|
|
|
|
= |
RHS (Proved) |
|
|
|
|
১৩. |
(xa/xb)1/ab |
. |
(xb/xc)1/bc |
. |
(xc/xa)1/ca |
= |
1 |
LHS= |
(xa/xb)1/ab |
. |
(xb/xc)1/bc |
. |
(xc/xa)1/ca |
|
|
=
|
(xa)1/ab --------
(xb)1/ab
|
.
|
(xb)1/bc --------
(xc)1/bc
|
.
|
(xc)1/ab ---------
(xa)1/ab
|
|
|
=
|
xa/ab -------
xb/ab
|
.
|
xb/bc ------
xc/bc
|
.
|
xc/ca ------
xa/ca
|
|
|
=
|
x1/b -----
x1/a
|
.
|
x1/c -----
x1/b
|
.
|
x1/a -----
x1/c
|
|
|
= |
1 |
|
|
|
|
|
|
= |
RHS (Proved) |
|
|
|
|
|
|
১৪. |
(xa/xb)a+b |
. |
(xb/xc)b+c |
. |
(xc/xa)c+a |
=1 |
|
LHS= |
(xa/xb)a+b |
. |
(xb/xc)b+c |
. |
(xc/xa)c+a |
|
|
= |
x(a-b)(a+b) |
. |
x(b-c)(b+c) |
. |
x(c-a)(c+a) |
|
|
= |
x(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) |
|
|
||||
এখন, |
(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a) |
|
|||||
= |
a2-b2+b2-c2+c2-a2 |
|
|
|
|
||
= |
0 |
|
|
|
|
|
|
প্রদত্ত রাশি= x0 = |
1 |
= RHS (Proved) |
|
১৫. |
(xp/xq)p+q-r.(xq/xr)q+r-p.(xr/xp)r+p-q=1 |
|||
LHS= |
x(p-q)(p+q-r).x(q-r)(q+r-p).x(r-p)(r+p-q) |
|||
= |
x(p-q)(p+q-r)+ (q-r)(q+r-p)+ (r-p)(r+p-q) |
|||
এখন, |
(p-q)(p+q-r)+ (q-r)(q+r-p)+ (r-p)(r+p-q) |
|||
= |
p2-pq+pq-q2-rp+qr+q2-q2-qr+qr-r2-pq+pr+ r2-pr+pr-qr+pq
|
|||
= |
0 |
|
|
|
প্রদত্ত রাশি= x0 = 1 |
= |
RHS (Proved) |
|
১৬. যদি ax=b, by=c এবং cz=a হয়, তবে দেখাও যে, xyz=1
সমাধানঃ
রাশি তিনটি যোগ করে পাই,
ax+by+cz=b+c+a
বা, ax+by+cz=a1+b1+c1
এখানে, ax=a1
তাহলে। x=1
একইভাবে, y=1; z=1
LHS=xyz=1.1.1=1=RHS (Proved)
সমাধান কর (১৭-২০):
১৭. 4x=8
সমাধানঃ
বা, (2)2x=23
বা, 2x=3
বা, x=3/2
১৮. 22x+1=128
সমাধানঃ
বা, 22x+1=27
বা, 2x+1=7
বা, 2x=7-1
বা, 2x=6
বা, x=6/2
বা, x=3
১৯. (√3)x+1=(3√3)2x-1
সমাধানঃ
বা, 3(1/2)(x+1)=3(1/3)(2x-1)
বা, (x+1)/2=(2x-1)/3
বা, 3(x+1)=2(2x-1)
বা, 3x+3=4x-2
বা, 3x-4x=-2-3
বা, -x=-5
বা, x=5
২০. 2x+21-x=3
সমাধানঃ
বা, 2x+21/2x=3
বা, (22x+2)/2x=3
বা, 22x+2=3.2x
বা, 22x+2-3.2x=0
বা, (2x)2-2.2x.1+12-2x+1=0
বা, (2x-1)2-1(2x-1)=0
বা, (2x-1)(2x-1-1)=0
বা, (2x-1)(2x-2)=0
বা, 2x-1=0 অথবা, 2x-2=0
বা, 2x=1 বা, 2x=2
বা, 2x=20 বা, 2x=21
বা, x=0 বা, x=1
∴x=0,1
২১. P=xa, Q=xb এবং R=xc
ক) Pbc.Q-ca = এর মান নির্ণয় কর।
সমাধানঃ
Pbc.Q-ca
=(xa)bc.(xb)-ca
=xabc.x-abc
=xabc-abc
=x0
=1
খ)
=(xa/xb)a+b ✕ (xb/xc)b+c ÷ 2(xc.xa)a-c
= x(a-b)(a+B) ✕ x(b-c)(b+c) ÷ 2x(a+c)(a-c)
=xa2-b2✕xb2-c2÷2xa2-c2
= xa2-b2✕xb2-c2✕1/(2xa2-c2)
=xa2-b2+b2-c2-a2+c2✕1/2
=x0✕1/2
=1✕1/2
=1/2
গ)
=(P/Q)a2+ab+b2✕(Q/R)b2+bc+c2✕(R/P)c2+ca+a2
=(xa/xb) a2+ab+b2✕(xb/xc)b2+bc+c2✕(xc/xa)c2+ca+a2
=(xa-b) a2+ab+b2✕(xb-c)b2+bc+c2✕(xc-a)c2+ca+a2
=xa3-b3✕xb3-c3✕xc3-a3
=xa3-b3+b3-c3+c3-a3
=x0
=1
=LHS (Proved)
২২. x=(2a-1+3b-1)-1, y=pq√(xp/xq)✕ qr√(xq/xr)✕ rp√(xr/xp)
এবং,
|
z
|
=
|
5m+1 --------
(5m)m-1
|
÷
|
25m+1 ---------
(5m-1)m+1
|
যেখানে x,p,q,r>0
|
ক) x এর মান নির্ণয় কর।
সমাধানঃ |
|
ক) |
|
x |
= (2a-1+3b-1)-1 |
= |
(2✕1/a+3✕1/b)-1 |
= |
(2/a+3/b)-1 |
= |
{(2b+3a)/ab}-1 |
=
|
ab ------
2b+3a
|
খ)
LHS
= y+4√81
= pq√(xp/xq)✕ qr√(xq/xr)✕ rp√(xr/xp)+ 4√81
= pq√(xp-q)✕ qr√(xq-r)✕ rp√(xr-p)+ 4√81
= (xp-q)1/pq✕(xq-r)1/qr✕(xr-p)1/rp+ 4√81
= x(p-q)/pq✕x(q-r)/qr✕x(r-p)rp+ 811/4
=x(pr-qr+pq-pr+qr-ppq)/pqr+(34)1/4
=x0/ppqr+34/4
=x0+3
=1+3
=4
=RHS [Note textbook RHS=5 is not correct]
গ) |
|
|
|
|
|
দেওয়া আছে, |
|
|
|||
|
z |
= |
5m+1 --------
(5m)m-1
|
÷
|
25m+1 ---------
(5m-1)m+1
|
|
|
=
|
5m+1 ------
5m2-m
|
÷
|
(52)m+1 -------
5m2-12
|
|
|
=
|
5m+1 -------
5m2-m
|
÷
|
52m+2 --------
5m2-12
|
|
|
=
|
5m+1 -------
5m2-m
|
✕
|
5m2-12 ---------
52m+2
|
|
|
= |
5m+1+m2-1-m2+m-2m-2 |
||
|
|
= |
5-2 |
|
|
|
|
= |
1 52
|
|
|
খ হতে পাই, y=1 |
|||||
∴ |
y |
÷ |
x = 1 ÷ |
1
52
|
|
|
|
|
=1✕52 |
|
|
|
|
|
=1✕25 |
|
|
|
|
|
=25 |
|
|
÷ y ÷ z =25 (দেখানো হলো) |
No comments:
Post a Comment