লগারিদমঃ সরল, প্রমান ও সমাধান
১. মান নির্ণয় করঃ
ক) log381
সমাধানঃ
খ) log53√5
সমাধানঃ
= log551/3
=(1/3). log55 [log55=1]
=(1/3).1
=1/3
গ) log42
সমাধানঃ
= log4√4
= log441/2
=(1/2). log44 [log44=1]
=(1/2).1
=1/2
ঘ) log2√5400
সমাধানঃ
= log2√516✕25
= log2√524✕52
= log2√524✕(√5)4
= log2√5(2√5)4
=4. log2√52√5 [log2√52√5=1]
=4.1
=4
ঙ) log5(3√5. √5)
সমাধানঃ
= log551/3.51/2
= log551/3+1/2
= log551/3+1/2
= log555/6
=(5/6). log55
=(5/6).1 [log55=1]
=5/6
২. এর মান নির্ণয় করঃ
ক) log5x=3
সমাধানঃ
বা, x=53
বা, x=125
খ) logx25=2
সমাধানঃ
বা, 25=x2
বা, 52=x2
বা, 5=x
বা, x=5
গ) logx(1/16)=-2
সমাধানঃ
বা, 1/16=x-2
বা, ¼2=x-2
বা, 4-2=x-2
বা, 4=x
বা, x=4
৩. দেখাও যে,
ক) 5log105-log1025=log10125
সমাধানঃ
=5log105-log1025
=5log105-log1052
=5log105-2log105
=3log105
=log1053
= log10125
=RHS (Proved)
খ) log10(50/147)=log102+2log105-log103-2log107
সমাধানঃ
= log10(50/147)
= log1050- log10147
= log10(2✕5✕5)- log10(3✕7✕7)
= log10(2✕52)- log10(3✕72)
=(log102+ log1052)-( log103+ log1072)
= log102+2 log105- log103-2 log107
=RHS (Proved)
গ) 3log102+2log103+log105=log10360
সমাধানঃ
= 3log102+2log103+log105
= log1023+ log1032+ log105
= log108+ log109+ log105
= log10(8✕9✕5)
= log10360
=RHS (Proved)
৪. সরল করঃ
ক) 7 log10(10/9)-2 log10(25/24)+3 log10(81/80)
সমাধানঃ
=7 log1010-7 log109-(2 log1025-2 log1024)+(3 log1081-3 log1080)
= log10107- log1097- log10252+ log10242+ log10813- log10803
= log10107+ log10242+ log10813-( log1097+ log10252+ log10803)
= log10 (107✕242✕813)- log10(97✕252✕803)
= log10(27✕57✕32✕82✕93✕93)- log10(97✕ 52✕52✕83✕103)
= log10(27✕57✕32✕26✕36✕36)- log10(314✕ 52✕52✕29✕53✕23)
= log10(213✕57✕314)- log10(314✕ 57✕212)
= log10(213✕57✕314/314✕ 57✕212)
= log102
খ) log7(5√7. √7)-log33√3+log42
সমাধানঃ
= log771/5.71/2- log331/3+ log42
= log771/5+1/2- (1/3)log33+ log4√4
= log777/10-(1/3)log33+ log441/2
=(7/10) log77-(1/3)log33+(1/2) log44
=(7/10).1-(1/3).1+(1/2).1
=7/10-1/3+1/2
=(21-10+15)/30
=26/30
=13/15
গ) loge(a3b3/c3)+ loge(b3c3/d3)+ loge(c3d3/a3)-3 logeb2c
সমাধানঃ
= logea3b3- logec3+ logeb3c3- loged3+ logec3d3- logea3-loge(b2c)3
=( logea3b3+ logeb3c3+ logec3d3-( logec3-+loged3+ logea3+ logeb6c3)
=logea3b3✕b3c3✕c3d3-logec3✕d3✕a3✕b6c3
=logea3b6c6d3-logec6d3a3b6c3
=0
৫. x=2, y=3, z=5, w=7 হলে, নিচের প্রশ্নগুলো সমাধান কর।
ক) √(y3) এর 3 ভিত্তিক লগ নির্ণয় কর।
সমাধানঃ
=log3(y3)1/2
=log3y3/2
=log333/2
=(3/2).log33
=(3/2).1
=3/2
খ) w.log(xz/y2)-x.log(z2/x2y)+y.log(y4/x4z) এর মান নির্ণয় কর।
সমাধানঃ
= 7.log(2✕5/32)-2.log(52/22✕3)+3.log(34/24 ✕5)
=7 log(2✕5)-7 log32-2 log52+ 2log(22✕3)+3 log34-3 log(24✕5)
=log(2✕5)7-log(32)7-log(52)2+log(22✕3)2+log(34)3-log(24✕5)3
={log(2✕5)7+ log(22✕3)2+log(34)3 -{log(32)7+log(52)2 + log(24✕5)3}
=log{(2✕5)7✕(22✕3)2✕(34)3✕-log(32)7✕(52)2✕(24✕5)3
=log(211✕57✕314)-log(314✕57✕212)
=log(211✕57✕314)/(314✕57✕212)
=log2-1
=-1.log2
=-log2
গ) দেখাও যে, |
|
|
log√y3+ylogx-(y/x)log(xz) -----------------------------
log(xy)-logz
|
=
|
logy√y3
|
সমাধানঃ
= log√33+3log2-(3/2).log(2.5)
= log33/2+log23-log(2.5)3/2
= log33/2+log(√4)3-log(2.5)3/2
= log33/2+log43/2-log(10)3/2
=(3/2).(log3+log4-log10)
=(3/2).log(3.4/10)
=(3/2).log(12/10)
=(3/2).log(6/5)
=log(2.3/5)
=log(6/5)
এখন, LHS= |
|
|
(3/2).log(6/5) -----------------
log(6/5)
|
=
|
3/2
|
= logy√y3
=log3√33
=log333/2
=(3/2). log33
=(3/2).1
=3/2
No comments:
Post a Comment